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v ABSTRACT
/\

The performance of an extended Kalman filter used to track a maneuvering surface
target using HFDF lines-of-bearing is substantially improved by implementing a fixed
interval smoothing algorithm and a maneuver detection method that uses a noise vari-
ance estimator process. This tracking routine is designed and implemented in a com-
puter program developed for this thesis. The Hall noise model is used to accurately
evaluate the performance of the tracking algorithm in a noisy environment. Several
tracking scenarios are simulated and analyzed. The application of the Kalman tracker
to a tropical storm tracking problem is investigated. Actual storm tracks obtained from
the Joint Typhoon Warning Center in Guam, Mariana Islands are used for this research.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.

iv




TABLE OF CONTENTS

I INTRODUCTION ..ttt tt e et e e et e e e e e e 1
I PROBLEM STATEMENT ...ttt et et 3
A. GENERAL o0ttt e 3
B. SYSTEM MODEL ...ttt et 4
C. MEASUREMENT MODEL .. \vvtie et 5
HI. KALMAN FILTER THEORY .\ttt 8
A, GENERAL oottt et e 8
B. EXTENDED KALMAN FILTER .. .ointnineeeeee e, 8
C. NOISE PROCESSES ...ttt 10
D. INITIALIZATION AND OPERATION . ..ooviviinieanannnnnn, 12
E. MANEUVER AND DIVERGENCE DETECTION +...vvvvnnnnn... 15
F. SMOOTHING ALGORITHM . ..vitnen et 18
IV. COMPUTER SIMULATIONS ..ttt e, 20
Ao GENERAL .ottt e 20
B. SCENARIOED ..ottt e e e e s 22
C. SCENARIOE2 oottt e 26
D. SCENARIO 3 ..\ttt ittt e e 30
E. SCENARIO B4 .ottt e 34
F. SCENARIOES L.ttt et 38
G. SCENARIOH6 .. veeee ettt 42
H. SCENARIOET oo\ttt ittt e, 46
L OSCENARIO E8 L.\ttt ettt et et 50
3. SCENARIOHY ..ttt et e 54
V. STORM TRACKING @'ttt 58
A GENERAL L.ttt 58
B. SYSTEM AND MEASUREMENT MODELS ...........cvvvvvnnn. 58
C. STORM TRACKS .ttt e e 59




VI. CONCLUSIONS .......

APPENDIX A. SHIPSM.FOR

APPENDIX B. TRACK.FOR

LIST OF REFERENCES .....

INITIAL DISTRIBUTION LIST

oooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo




Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

LIST OF FIGURES

1. Surface Tracking Geometry ............ciiiiiiiiininnnnnnnns 3

2. White Noise Model ....... .0ttt iiannennnnn 7

3. Hall Noise Model ...... ..ttt iiiinenanneennn 7
4. Initialization Process ..........cciiiinnerinnernnnennnnan 13

5. Processed Data vs Observed Results ................ ... 23
6. Position Error ... ... . i i i i e 24

7. Variance of Position Error in the X Direction ................... 24

8. Scenario #1 Overall Track Results ..........c.vviirninenn.... 25

9. Processed Data vs Observed Results .......................... 27
10. PoSition Error ...ttt i ettt e e e 28
11. Variance of Position Error in the X Direction ................... 28
12. Scenario #2 Overall Track Results ........... ... ... 29
13. Processed Data vs Observed Results . ............. ... ... ...... 31
I4. Posttion Error ... ... i i e e e 32
15. Variance of Position Error in the X Direction ................... 32
16. Scenario £3 Overall Track Results ....... ... ... ... .. . ..., 33
17. Processed Data vs Observed Results ............... ... ....... 35
18, Position Error . ... i e e e e e 36
19. Variance of Position Error in the X Direction ................... 36
20. Scenario #4 Overall Track Results .............. ... ... . ..., 37
21. Processed Data vs Observed Results ............. ... .......... 39
22, POSIHON ErrOr ...t i it i e e e e 40
23. Variance of Position Error in the X Direction ................... 40
24. Scenario #5 Overall Track Results ........................... 41
25. Processed Data vs Observed Results . ......................... 43
26. Position Error ... ... .t i e e et 44
27. Variance of Position Error in the X Direction ................... 44
28. Scenario #6 Overall Track Results .. ....... vttt inennenn 45
29. Processed Data vs Observed Results .................0ovnnn. 47
30, Position Error ... it e e e e 48
31. Variance of Position Error in the X Direction ................... 48

vii




Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Scenario #7 Overall Track Results .................. .. ... ... 49
Processed Data vs Observed Results .................. ... .. ... 51
Position Error ... .. . i i e 2
. Variance of Position Error in the X Direction ................... 52
Scenario #8 Overall Track Results ............. ... . .. oot 53
Processed Data vs Observed Results ............... ... ... 55
Position Error ... ... i e i e 56
Variance of Position Error in the X Direction ................... 56
Scenario #9 Overall Track Results . .................. ... ... .. 57
Storm Track of TyphoonPat ............... ... ... ... .. ... 60
Filtered and Smoothed Track of TyphoonPat .................. 61
Storm Track of Typhoon Tess ........ ... .. e, 62
Filtered and Smoothed Track of Tvphoon Tess .................. 63




ACKNOWLEDGEMENTS

I would like to express my appreciation to Prof. Hal Titus for his instructive guid-
ance and recommendations that kept resetting the author’s learning “process” when this
“process” began to diverge excessively from its intended track. 1 also want to thank my
#1 fan, myv wife Diana, whose love and support made this thesis "doable” and my son
Jared who kept me laughing the whole way.

ix




I. INTRODUCTION

In 1986, then Deputy Chief of Naval Operations for Surface Warfare (OP-03), Vice
Admiral Joseph Metcalf 111 challenged the leadership of the U.S. Navy's Surface War-
fare community to reexamine the traditional concepts of surface warfare-concepts that
perhaps are preventing the Navy from taking full advantage of present and future tech-
nologies. Thus began Surface Warfare’s Revolution at Sea. A vital concept to the
“Revolution at Sea” is the constantly expanding oceanic battle space (“up, out, and
down”). [Ref. 1]

With the advent of the modern long range cruise missile, U.S. surface forces have
the capability to attack enemy surface targets at 250 nautical miles. In order to make
full use of this capability however, an accurate and reliable method of over-the-horizon
tracking and targeting is necessary. The current methods used to target an enemy sur-
face force at these ranges include the use of satellites, aircraft, and intelligence sources.
A major drawback to using these assets is the requirement that they transmit vital tar-
geting information to the attacking ship. A shipboard surveillance system that provides
this information locally would allow the attacking forces to operate independently
without relving on other sources for targeting data, data that may or may not be avail-
able when necded for a number of reasons. In addition, the ability to operate covertly,
and to track and target enemy forces without divulging any targeting information,
greatly enhances the probability of success of a mission. This requires a passive acqui-
sition system. Surveillance of the high frequency spectrum using passive radio-direction
finding {RDF) sensors is one method of passive long range tracking. A shipboard high
frequency-direction finding system based on an extended Kalman filter with a fixed in-
terval smoothing algorithm can be used to accurately track and target a maneuvering
surface ship.

The major thrust of this thesis deals with the problem of tracking a surface ship at
long ranges using lines-of-bearing obtained from radio direction-finding sensors located
on two tracking ships. It is not the purpose of this research to address the multitude
of problems associated with the hardware aspects of a high frequency radio direction-
finding system. The basic assumption used here is that a shipboard direction-finding
svsiam is in place that provides a line-of-bearing contaminated by an additive noise
process. The extended Kalman filter and the fixed interval smoothing algorithm will be




used to refine the observed lines-of-bearing and improve the accuracy of the target track.
The noisc added to the observed line-of-bearing is an integral part of the measurement
model and should reflect the noise process that would be encountered in the HF envi-
ronment as accurately as possible. For the simulations conducted, this measurement
noise was modeled using first a white noise model and then with a Hall noise model.

This thesis will be an extension of a previous thesis done by Lieutenant Thomas K.
Bennett. The major points of that thests are:

¢ Tne development of an extended Kalman filter shiptracking program.
¢ The observations used in the shiptracking program were RDF lines-of bearing.

e The posttion errors achieved by this program were 10-135 nautical miles.

This thesis will attempt to improve on the previous research by implementing a fixed
interval smoothing algorithm and a maneuver:divergence detection scheme that uses a
noise variance estimator process. The smoothing algorithm is an off-line calculaticn
that uses all measurements taken during a time interval 0.< k< to improve the esti-
mate. By having a more accurate assessment of what the target has done in the past,
we will be better able to predict ahead and estimate a target’s future course, speed, and
position. The computational aspects of the smoothing algorithm will be investigated as
well as the types of estimation problems where the improvement due to the smoothed
calculations is significant and worth the extra computational effort. The two noise
models used in the simulations will be compared as to their accuracy and their advan-
tages or disadvantages of one or the other based on the computer simulations.

The tracking oi a tropical storm is a problem similar to the ship tracking problem
and 1s discussed in Chapter 5. The major difference between the filtering applications is
that the measurement data in the storm tracker are actual position coordinates given by
latitude and longitude values. This leads to a linear measurement process and therefore,
the linearization required in the ship tracking problem is unnecessary in the storm
tracking scenario.




1II. PROBLEM STATEMENT

A. GENERAL

The tracking scenario used in this thesis involves two tracking ships moving in the
general direction toward a target ship. The positions of the vessels are given in xy co-
ordinates. The target-tracker scenario is shown in Figure 1.

N

Figure 1.  Surface Tracking Geometry




This problem will be developed using state space methods. Given the lines-of-
bearing (the measurements) received by a radio direction-finding system, we are inter-
ested in estimating the location, course, and speed of the target (the states of the plant).
The state variables for this plant are x,, x,, y,, and y, .

B. SYSTEM MODEL
The system to be modeled in this problem is that of a surface ship at sea. In the
development of this model, the following assumptions were made.

¢ The effect of wind, current, and hydrodynamic forces on the ship are neglected.
¢ The curvature of the earth is neglected; ocean surface area is flat.

e Course and speed inputs are constant (i.e., step inputs).

This is a inear, time-distance system that can be described with the equations of motion

for constant acceleration in two dimensions. The state space equation is
Xpp1 = O + Ty (2.1)

where
X, = parameter to be estimated (state vector).

@, = state transition matrix which describes how the states of the dynamic system are
related

I',= svstem noise coefficient matrix

a,= random forcing function.

I'rom Equation (2.1) and the above assumptions, the state vector is

x
x
Xy = (2.2)
y
y
and the system state equation can be expanded as
2
x 1 7o o= 1L o
X 01 0 0]}|l=x Ak
Ykt1=lo o 1 THY|x* (7; l:_[ayk] (2.3)
¥y 1 |
0 00 o T




The system noise process for the ship tracking problem is a function of the noise coeffi-
cient matrix, I',, and the random forcing function, a,, which is simply the acceleration
vector.

C. MEASUREMENT MODEL
For a linear measurement process, the measurements are linearly related to the state
variables and can be modeled using the linear measurement equation

2 = Hpxp, + 3 (2.4)

where
Z,= set of measurements.

H,= observation matrix that gives the noiseless relationship between the measure-
ments and the state vector.

X, = state vector

1= measurement noise.

In this tracking problem, the measurements are the lines-of-bearing received by the
radio direction-finding sensors located on two surface ships. For the geometryv of the
problem shown in Figure 1, the relationship of the measurements to the state variables
‘s not linear and the measurement equation becomes

—f (X = Xni)
pg=tan” | —————— |+, 2.5
Znk [ G — Vi) :| & (2:3)

where
2= observed lines of bearing at time k
X, )= position of target at time k
X Vs = position of sensor n at time k

¥,= measurement noise.

This nonlinear equation must be linearized prior to processing the measurement data
with the filter and the smoothing algorithm. For this problem, an extended Kalman fil-
ter is required and will be discussed in the next chapter.

There are several types of noise that affect the propagation of radio signals, how-
ever, this noise can basically be divided into two categories, depending on whether it
originates from within the receiving system or external to the receiving antenna. For the
frequencies of interest in this problem (2-30 MHz), it is the atmospheric noise external
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to the receiving system that is of the greatest concern. [Ref. 2: p. 4] This noise is a
function of many variables including the time of day, geographical location, season, and
frequency. Although this is generally a non-white, non-gaussian noise process, it can
be adequately described as a white noise process over an extended period of time. The
white noise model was used for the first set of computer simulations.

A deficiency of white noise as a model for atmospheric noise, is its inability to ac-
curately model the impulsive nature of the atmospheric noise associated with lightning
discharges. This impulsive noise characteristic was investigated by Hall {Ref. 3] and led
to the development of Hall's generalized "t” model which has the form

x(1) = m(n() (2.6)

where m(t) is a slowly varying stationary random process independent of »() and n(1) is
a zero mean, narrowband Gaussian process. The complete development of this model
can be found in Hall {Ref. 3].

In [Ref. 3: pp. 13-35], Spaulding outlines a method of generating random noise
samples using the Hall model. The procedure for calculating these random samples
starts by generating random samples from a uniform distribution, V, in the interval from
zero to one and then modifving the sample according to the distribution required. For
the Hall model, the random noise samples are obtained using the equation

X,= (Ve -1)7 (27)

where © = 4 and y = 0.707. These values for @ and y were chosen using the atmospheric
noise curves in [Ref. 3: p. 44]. The positive bias in the Hall model was subtracted out
prior to inserting the noise data into the ship tracking algorithm. This was done in order
to prevent a biased error covariance in the Kalman filter. The two noise models are
shown in Figures 2 and 3. Both noise processes are zero mean and + 3 variance.
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HI. KALMAN FILTER THEORY

A. GENERAL

Filtering refers to the process of estimating the state vector at the current time based
upon all past measurements. An optimal filter concentrates on optimizing a specific
performance measure used to approximate the quality of the estimate. The Kalman fil-
ter is the optimal filter in a class of linear filters that minimize the mean square esti-
mation error between the actual and desired output. In other words, the Kalman filter
attempts to minimize the elements along the main diagonal of the state error covariance
matrix. The filter itself is actually a recursive algorithm for processing discrete meas-
urements or observations in an optimal manner. [Ref. 5: p. 101] It requires a priori
knowledge of the state estimate (x,_,) and its error covariance (/,_,), and the current
observation (z,). The Kalman filter is the proper algorithm to be used when both the
system model and the measurement model are linear functions of the state variables and
these models can be described by the equations

Xpp = Opx, + T iay 3.1
e =Hx, + 5 (3.2

B. EXTENDED KALMAN FILTER

From equation (2.5), we can see that there is a nonlinear relationship between the
observed lines-of-bearing and the state variables. The adaptation of the Kalman filter
to a nonlinear application is the extended Kalman filter. The nonlinear measurement
equation is

&= h(&k, K) + ¥ (3.3)

where the observation matrix (h,) is a function of the state at each sampling time and
the sampling index 4. Linearization of this equation can be accomplished by expanding
h in a Taylor series about an estimated trajectory that is continually updated with the
filter's estimates. By keeping only the first term of the series expansion, a first order
approximation is obtained. Higher order, more precise filters can be constructed by in-
cluding more terms of the Taylor series expansion for the nonlinearities, and deriving




recursive relations for the higher moments of the state vector. A detailed discussion of

this procedure can be found in Gelb [Ref. 5: p. 100).

This linearization process vields the linear measurement equation

2= Hpxy + 3

where

O,Ik

H, - [ Shlay, K ]

Applying this linearization method to equation (2.5), we get

-1 (xlk—xnk)
‘5[‘3“ [u-,k—ynk) ]]

O-Jk

Hk=

Simplifving equation (3.6)

Hk=[hll ha  hy hm]

R -1 (Xex = Xni)
_ o[ tan [ (ke = i) j” G

where

(3.4)

(3.5)

(3.6)

(3.7)

—ynk)

A 7 (J“!k }’nk)
127 F xfk =

dxy, k\ﬁ

5 tan-l[ (Xex = Xng) ]
L Gk -ynk)—_ __ (g = X

(3.8)

(3.9)

0¥k

1| (e = Xng)
o tan [Urk = ¥nk) ]]

hyy = — =

OV

~ (3.10)
R}

3.11)




By replacing y, with y,,., in equation (3.8) and x, with X, in equation (3.10) the
linearized measurement matrix can be written as

Frgeltemry = Fnid) Ry — i)
Hk=[ Hh). L L > L (.12)
Ry R;
where the range (R) is computed as
A2 A 2 A 2
R® = (Vyapk—1y = Ini)” + Kogre—1) — Xnk) (3.13)

Having linearized the measurement process about X,,_,, where x,,_,, denotes the state
estimate at time & based on all previous estimates computed at time k — I, we can now
use the normal linear Kalman filter equations.

C. NOISE PROCESSES

The calculation of the error covariance matrix and the filter gain matrix requires the
covariance matrices for the uncorrelated noise process g, and y,. For the measurement
noise process v,, the covariance matrix is

ELv 1= R, (3.14)

where R, is defined as the state measurement noise covariance matrix. It is based on the
sensor accuracy and accounts for unknown disturbances such as steps, white noise, or
imperfections in the plant model. The variance of the white noise model and the Hall
noise model used in the computer simulations was + 3 degrees.

The state excitation matrix, Q,, used in the Kalman filter represents the system noise
process and is a function of the system noise coefficient matrix, I',, and the random
forcing function, a,, where

Q=[0I 1] (3.15)
where ', is defined

EHa}) Haga,l

v T -
Oe= B foyaa)  Hal

(3.16)

and T, is the same as in equation (2.3). The Q, matrix allows for any random target
maneuvers as well as inaccuracies in the system model. The magnitude of Q, has a direct

10




bearing on the magnitude of the state error covariance matrix and it prevents the
covariance matrix from becoming singular by ensuring some uncertainty in the state es-
timates.

From Figure 1, the velocity of the target is

v, =V, sin O, (3.17)
=y, cos O, (3.18)

Vy

Differentiating equations (3.17) and (3.18) to get the target’s acceleration

ac=if & |+56] = ] (3.19)
a, = i-,: —:—ﬂ - v,(l),[ = ] (3.20)
where
: 1—: ? =sin @,
j t—: : = cos O,

Here v, and ©, are equal to the acceleration along the target’s course and the angular

velocity or turn rate, respectively. Assuming that

EFO,]=E5])=0
the variances become
E[0]] = 03, (3.21)
ELi7] = o, (3.22)

Approximate values [Ref. 6: p. 39] for the standard deviations of the accelerations and

the angular velocity are

11




degrees

0, =0.1 —gc— (3.23)
=001 Knois. (3.29)
v SCC )
and the variance values are
ol = 0.01096( Ladians )’ (3.25)
o} = 0.0001( L2 )2 (3.26)
min

Taking the expectation of equations (3.19) and (3.20) and substituting in equations
(3.21) and (3.22) the elements of the Q' matrix are

]
Bad =i = |+ b 6.27)
v
=l & |+ oba (3.29)
62 2
Elaxay] = Elayay] = ‘x‘y[(dv;;l )2 - %x] (3.29)

D. INITIALIZATION AND OPERATION

In the ship tracking scenario, the extended Kalman filter and the fixed interval
smoothing algorithm are used to minimize the tracking errors. Prior to processing the
measurement data, the filter must be initialized with an initial state estimate and an ini-
tial error covariance matrix. This initialization process is a very important step in the
filter operation and gross inaccuracies in this step may cause the filter to diverge. Di-
vergence occurs when the calculated covariance errors become much smaller than the
actual covariance errors. This causes the actual values of the states to pull away from
the estimated values. The concept of divergence will be discussed in greater detail in
section E of this chapter. The initialization process is shown in Figure 4.

12




INITIAL
N ESTIMATE
(Xt,Y1) \)
. \')
y
' ACTUAL
; POSITION
'l
]
[ 4
[}
SENSOR 1 Vs2
(X1,Y1)
SENSOR 2
(X2,Y2)

Figure 4. Initialization Process

The state estimates are the target’s x and y position and the x and y components of
the velocity. The initial position estimate [Ref. 7: p. 11] is the intersection of the first two

lines-ol-bearing reccived by the filter and can be calculated as

_ J2 tﬂn(oz) +y| tan(el) + Xy — Xy
= tan(@,) — tan(6,)

- y,] x tan(8,) + x; (3.30)

_ )2 tan((’z) +y| !an((),) + Xy — Xy

Y= tan(0,) — tan(6,) (3.31)

The initial velocity estimate is taken to be zero since there is no velocity information
available to start the problem. The initial state estimates carry with them some error

13




and it is this error or rather an estimate of this error that is used to construct the initial
error covariance matrix. The initial position error is estimated to be 100 nautical miles
in the x and y position and the initial velocity estimate is taken to be 0.5 nautical miles
per minute or 30 knots. The errors are assumed to be zero mean and uncorrelated.
Given these error approximations, the initial error covariance matrix can be written as

10000 O 0 0
0 025 0 0
0 0 10000 O
0 0 0 0.25

P(o|_1)= (3-32)

The basic operation of the filter is a relatively straightforward recursive process.
The equations used in the extended Kalman filter are

i-(klk—l) = d’ka‘c-(k]k) (3.33)
T
Pypary = GrPyinybi + Ok (3.34)
_ T, T -1 1%
Gk = P(klk—])llk(HkP(Hk—l)Hk + Rk) (333)
i(k]k) =r£’(k|k-1) + Gl — Hki(k[k—l)) (3.36)
where
Xuioy, = projected ahead state estimate

¢, = state transition matrix given by eq. (2.3)
P, .., = projected ahead state error covariance matrix
Q. = state excitation covariance matrix given by eq. (3.15)

G, = Kalman gain matrix

R, = state measurement noise covariance matrix given by eq. (3.14)

H, = linearized measurement matrix given by eq. (3.12).

Once the filter is initialized, we are ready to begin the data processing operation.
The a priori state estimate and the state error covariance matrix are calculated using the
¢ matrix shown in equation (2.3) where T is the time difference in minutes between the
observed lines-of-bearing. (It is assumed that the lines-of-bearing are reccived simul-
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taneously by both sensors.) Once the projected state estimate has been calculated, it is
used to calculate the linearized observation matrix in equation (3.12).

The Kalman gain matrix serves to minimize the mean square estimation error and
is an indication of how much emphasis or weight will be placed on the current observa-
tion. If P,,_,, 1s small, the Kalman gain matrix will also be small due to the finite value
of R.. If the P;,_, is relatively large, the gain is approximately one. By rewriting the
equation for the calculation of the state estimate, equation (3.36) as

Xty = (1= Gel)Zgquory + G (3.38)

we can see how the Kalman gain matrix directly affects the weight placed on the current
observation z.. A large gain, indicating a large error covariance, will place more weight.
on the current observation as the filter tries to correct the states. A small gain, indicat-
ing a small error covariance, places less emphasis on the new observation.

If the Kalman gain is expressed as
Tp-1 x4
Gk = (klk—l)}]k Rk (3.39)

it can be scen that the gain matrix is “proportional” to the uncertainty in the estimate
P.._;, and "inversely proportional” to the measurement noise R,. For a large R, and a
small P ,_,. the measurement noise (x,) in equation (3.4) is due mainly to noise and only
small corrections should be made in the state estimate. However, if R, is small and
P. ., is large. the measurement noise contains considerable information about the errors
in the estimates and therefore a strong correction should be made to the state estimates.
[Ref. 5:p. 127-8]

E. MANEUVER AND DIVERGENCE DETECTION

The extended Kalman filter used in the tracking scenario is defined as an adaptive
or self-learning filter due to its ability to manipulate the process parameters (¢,, H,, R,,
and Q,) that change with time. If the model of the dynamic process under consideration
is inaccurate, the filtered estimates tend to walk off from, or diverge from, the true esti-
mates. As the filter locks on to the these inaccurate estimates, the state error covariance
matrix gets very small which in turn causes the filter gain to decrease. When the filter
gain decreases, less weight is placed on the current observations and the filter is unable
to make the corrections required to correct the state estimates. The divergence problem
can be detected by monitoring the filter residual process.
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The residual process of the extended Kalman filter is defined as the difference be-
tween the observation at time 7, and the output of the system model based on past inputs
up to time 7. The residuals are a measure of how well the model fits the data. From

equation (3.36), the residual process is
2 — Hikgpemn) (3.40)

There are several techniques used to compensate for divergence. Bennett [Ref. 7:
p- 14-16], observes the three most recent residual values using a meving average filter
and computing the standard deviation of the residual process. It is determined that the
target has maneuvered if the standard deviation exceeds a maneuver detection threshold
value. The window of the moving average filter is wide enough to absorb excessive
bearing errors that are far outside the standard deviation but narrow enough to detect
a target maneuver soon after it occurs. This detection threshold was chosen to achieve
a 90% probability of detecting a maneuver with a 10% false alarm rate.

The maneuver and divergence technique implemented in this thesis is an adaptive
noise estimation technique presented by Jazwinski [Ref. 8: pp. 311-315], and utilized by
Olcovich [Ref. 9: pp. 30-33]. This technique examines the residual of each observation
and compares the residual value to an adaptive gate where the adaptive gate is defined
as three times the predicted residual standard deviation. Defining the variance of the
residual [Ref. 8: p.271} as

T
Yue+1) = HkP(k]k—l)Hk + R, (3.41)

The predicted residual standard deviation is

— _ Iy
o= rrry =~ HiPae-nyHi + Re (3.42)
and the adaptive gate becomes
GATE = 30, (3.43)

For each observation, the residual is compared to the adaptive gate. If the residual
value is less than the value of the adaptive gate, the filter continues on and processes the
next observation. If the residual value is greater than the adaptive gate, the divergence

detection and compensation algorithm begins.
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The state excitation matrix, Q,, is increased by increasing the elements along the
main diagonal of the @', matrix given by equation (3.16). The old a priori value of the
error covariance matrix, P,,_,,. given by equation (3.34), is increased by adding the new
state excitation matrix to it. A new filter gain, G,, and a new predicted residual variance,
Ta iy, - are then calculated using equations (3.35) and (3.41) respectively. By increasing
0, and adding it to P,,_,, we prevent the state error covariance from becoming overly
optimistic while at the same time increasing the Kalman filter gain to appropriately
weigh the current observations. The larger predicted residual variance increases the
width of the adaptive gate and opens the filter window to a larger bearing deviation. If
this bearing deviation exceeds the adaptive window for three consecutive iterations using
the same observation, the filter determines that the target has maneuvered and the filter
parameters are reset.

In order to efliciently implement this mancuver:divergence detection process, the
value of @, that is added to P,,.,, must be carcfully evaluated. If Q, is increased too
much, P, ., will grow without bound resulting in a highly unstable filter. This value of
Q. should be sufficiently high in order to open the adaptive gate wide enough to account
for a random noisy bearing without indicating a target maneuver, and vet low enough
so that a maneuvering bearing will be outside the filter window and the mancuver will
be detected. A more sensitive filter, one with a narrow adaptive gate that would be ex-
cecded rather frequently by noisy bearings, will give a higher number of “false alarms”
or indications that the target has mancuvered when it actually has not. On the other
hand. a less sensitive filter will tend to "miss” a target maneuver more often, due to the
larger window of the adaptive gate. However, it will also provide fewer erroneous target
mancuver indications. The idca is to design the adaptive gate parameters in order to
optimize the number of actual target maneuver detections, to minimize the number of
erroneous indications, and to prevent the filter from becoming unstable.

For the ship tracking scenario, the state excitation matrix Q, was increased by in-
creasing the coefficients along the main diagonal of the Q’, matrix by a factor of 2.5.
These coeflicients account for the random course and speed changes of the target. The
multiplicative constant of 2.5, found by trial and error, increases the width of the adap-
tive gate by three percent for each iteration.

The advantage of using this divergence algorithm over the moving average process
used in Ref. 7, is that a target maneuver can be detected with one observation as op-
posed to three observations required in the previous filtering algorithm. This advantage
also poses a serious defect in that the divergence 'maneuver detection decision is based
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on only one residual and, therefore, has little statistical significance. This can be cor-
rected with the smoothing algorithm. {Ref. 8 : p. 313}

F. SMOOTHING ALGORITHM

Smoothing is an off-line procedure that uses all the state estimates produced by an
estimator and attempts to improves the accuracy of these estimates by using more
measurements to produce the smoothed estimate. The estimator used in this thesis is the
extended Kalman filter described above. The basic idea behind smoothing is that for a
time interval from 0 to K, an estimate at time k based on all previous estimates up to
time K, (x, ), will be more accurate than an estimate based only on the estimates up to
time &, (x,,,).

Meditch [Ref. 10: p. 193] categorizes smoothing algorithms into three particular
groups.

Fixed Point Smoothing smooths the estimate X, p, at a fixed point £ as K increases.
Fixed Lag Smoothing smooths the estimate X_y s, for a fixed delay N as K increases.
Fixed Interval Smoothing smooths the estimate x, 5 over the time interval from 0 to
K where K is fixed and & varies from 0 to K.

This thesis uses a fixed-interval smoothing algorithm [Ref. 10: p. 216-224]. to
smooth the state estimates of the extended Kalman filter in the ship and storm tracking
scenarios. This smoothing routine provides the optimal state estimate at each time k
over a fixed interval from 0 to K. The smoothing algorithm is entered with the a priori
and a posteriori estimates and their associated covariance matrices. The equations used

in the smoothing algorithm are

A= P, (klk)(DTP (;-lHlk) (3.49)

Ty = Zgaiy + Aty — Xk + 11 K)) (3.45)
T

Paamy = Puiy + Al Prerrimy = Preeri) i (3.46)

where
A, = smoothing filter gain matrix
Xsm = smoothed state estimate a time k based on N observations

P,y = smoothed state error covariance matrix.

18




At the start of the smoothing routine, the last filtered estimate becomes the first
smoothed estimate. The index & in equations (3.44-46) is decremented by one for each
pass through the smoother with the beginning value of & equal to the number of data
points to be smoothed, minus one ( N —1 ). Consequently, the program makes N — 1
passes through the smoothing algorithm.
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1IV. COMPUTER SIMULATIONS

A. GENERAL

The SHIPTRACK extended Kalman filter program used in Ref. 7 was originally
implemented on an Apple Macintosh Plus microcomputer. This program was modified
and adapted to run on an IBM PC. A complete listing of the SHIPSM.FOR extended
Kalman filter and fixed interval smoothing algorithm is included in Appendix A. The
general scenario used in all of the computer simulation cases is that of two tracking ships
moving in the general direction of the target ship. The track data required by
SHIPSM.FOR for each scenario was generated using the program [Ref. 7]
TRACKDATA.FOR. This program calls for the initial course, speed, and position of
the two tracking ships and the target ship, the time of each HFDF interception, and any
course and speed changes of the target. (The course and speed of the tracking ships is
held constant throughout each simulation run.) The atmospheric noise is added to the
observed HFDF line-of-bearing in the TRACKDATA.FOR routine. It generates an
output file called TRKDATA.DAT that contains the time of each observation, the po-
sition of each tracking ship at each observation, and the angle of reception of each HF
intercept. This is the input file for the filter and smoothing algorithm. SHIPSM.FOR
generates four output files. FILDATA.DAT and SMDATA.DAT contain the track in-
formation and the files ELLIP.DAT and ELLIPS.DAT contain the data required to plot
the error ellipses for the filtered and the smoothed positions respectively. The error el-
lipses provide a graphical representation of the accuracy of the estimate.

The error ellipses generated [Ref. 7: pp. 16-17] by the filter and smoothing algorithm
represent an area where the probability of the target’s true position being within the el-
lipse is 68%. The erro. ellipses are plotted for every fourth position on the overall track
plot for each scenario (if the ellipses are plotted for every point the plots become too
cluttered to be interpreted accurately). A smoothed observation generates a smaller er-
ror ellipse than the filtered estimate. This is due to the smaller error variances for the
smoothed estimate compared to the error variances calculated for the filtered estimates
and reflect the higher degree of confidence placed in the accuracy of the smoothed esti-
mate. The last filtered estimate is equal to the first smoothed estimate and, therefore,
the smoothed and filtered error ellipse for this point overlap.
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Graphical results were obtained using the Matlab graphics package and the plots
included are representative of the results obtained from the different tracking scenarios.
The first graph is a geographical plot that compares the observed track, or the raw data,
with the filtered and smoothed track data and is used to demonstrate the eflect of the
Kalman filter and the smoothing algorithm on the noisy data. The following two graphs
present the position errors and the variance in the x direction associated with the track
data. The last plot is included to give the reader an idea of how accurate the filtered and
the smoothed tracks are when compared to the target’s true track.

The computer simulations consisted of nine targeting scenarios as listed below.

e Scenario #1--maneuver toward tracking ships, no measurement noise

e Scenario #2--no maneuver, white noise model

e Scenario £3--no maneuver, Hall noise model

¢ Scenario #4--maneuver toward tracking ships, white noise model

e Scenario #5--maneuver toward tracking ships, Hall noise model

e Scenario £6--maneuver away from tracking ships, white noise model

® Scenario #7--maneuver away from tracking ships, Hall noise model

e Scenario #8--2 maneuvers away from tracking ships, white noise model

® Scenario £9--2 maneuvers away from tracking ships, Hall noise model

Scenarios one thru seven were started with the target ship at a position of (-75,150).
tracking ship #1 at a position of (-30,0), and tracking ship #2 at a position of (30,0).
For scenarios cight and nine, the target ship started at the origin and the tracking ships
were located at the above positions. The tracking ships were set on a course of 000° at
10 knots for each scenario. The speed of the target ship was held constant at 15 knots
throughout the simulations. The data was collected over a ten hour time frame with the
HF intercepts recorded at 30 minute intervals for a total of 21 intercepts for each simu-
lation. All times are given in minutes.

The percent improvement in the position error due to the Kalman filter and the
smoothing algorithm, is given for the different scenarios. This percentage was calculated
by taking the percent of improvement, (1), for each observation and then averaging
these percentages over the time interval of interest. These values give a relative indi-
cation of the effectiveness or ineffectiveness of the filter and the smoother for a partic-
ular scenario.
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B. SCENARIO #1

The first tracking scenario was used to verify that the Kalman filter and the
smoothing algorithm would accurately track a maneuvering target in a noiseless envi-
ronment. The results for this scenario are shown in Figures 5-8. In this case, the ob-
served track equals the true track due to the absence of noise in the bearing
measurements. The initial track error shown in Figure 6 is due to the error in the initial
state estimates. When the target maneuvers at 300 minutes, the tracking error increases
dramatically for the first observation after the turn, however, it returns to zero two ob-
servations later as the filter regains the target track.

The error ellipses in Figure 8 demonstrate graphically how the accuracy of the po-
sition estimates increases as the problem progresses. At time zero, the tracking ships
are approximately 150 nm southeast of the target. The large distance in the y direction
is reflected in the size and orientation of the major axis of the ellipse lying in a
southeasterly direction. As the tracking ships move north, the magnitude of the major
axis decreases and the direction of this axis rotates as the target ship passes in front of
the advancing tracking ships and eventually to the east of at a range of approximately
10 nm. At the end of the scenario, the tracking ships are located northeast of the target.
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C. SCENARIO #2

In this case, the target is steaming due east at 15 knots for the entire simulation.
The results for this scenario are shown in Figures 9-12. The HFDF lines-of-bearing are
distorted using a white noise model to represent the atmospheric noise. The observed
track, calculated by taking the intercept of the unfilterd lines-of-bearing, is shown in
Figure 9. From this plot and the error plot of Figure 10, we can see how the extended
Kalman filter and the fixed interval smoothing improve the overall track estimate and
decrease the position error. The Kalman filter improves the position accuracy by an
average of 22% and the smoother improves the position accuracy by an average of 53%.
The filtered target speed is 19 knots and the smoothed target speed is 14.8 knots. The
increased confidence in the accuracy of the smoothed estimates is reflected in the plot
of the error variance in the x direction. Figure 12 shows the relationship of filtered and
smoothed tracks to the true target track.
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D. SCENARIO #3

This scenario is the same as the previous one except that the white noise model is
replaced by the Hall noise model. The results for this scenario are shown in Figures
13-16. The effects of the impulsive characteristics of this noise model are evident in the
early part of this simulation. A “wild” bearing, due to a noise spike, occurs at time 90
resulting in a large position error. This causes the next three filtered estimates to be very
inaccurate, however, the filter does begin to correct its track two observations after the
noise spike occurred. It is interesting to see that the smoother just about eliminates the
large tracking errors due to the erratic behavior of the Kalman filter. During the time
interval from 90 to 240 minutes, the average position error of the filtered estimates is
more than 850%, worse than the observed position error while the average smoothed
position error is less than 130% of the observed error. Even with this improvement, the
position error is still greater than 20 nm and unacceptable for a long range missile at-
tack. As the simulation progresses and the ships move toward each other, the track
solution is refined and the track error remains inside of ten miles. The small noise spike
at 570 minutes is completely smoothed by the smoothing algorithm. The average target
speed estimated by the filter is 20.3 knots and the smoother refines that estimate to 17
Kknots.
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E. SCENARIO #4

In this simulation, the target makes a 60° course change toward the advancing
tracking ships five hours after the problem starts. The results for this scenario are shown
in Figures 17-20. The atmospheric noise model in this case is white noise. As in Sce-
nario 1, the initial error ellipses indicate the high degree of uncertainty in the position
estimates, especially in the y direction where the range between the target ship and the
tracking ships is the greatest. The average improvement in position error due to the
filter for the entire simulation run was 24% and that due to the smoother was 28.5%.
However, if we look at the first five hours of the problem, while the ships were still over
100 miles away from each other, the improvement due to the filter was 44.5% and the
smoother improved the position accuracy by over 62%. After the target maneuvered,
the vessels closed each other at a speed of 23 knots and the position error decreased
rapidly. The Kalman filter tracked the target at an average speed of 16.5 knots
throughout the problem and the smoothed speed estimate was 14.8 knots.
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F. SCENARIO #5

The white noise model used in Scenario #4 is replaced by the Hall noise model for
Scenario #5. The results for this scenario are shown in Figures 21-24. In this case, three
noise spikes occur at observations one, three, and four as seen in Figure 21 and, there-
fore, the observed positions at these times are extremly inaccurate. The Kalman filter
improved the position accuracy by 33% over these four observations while the im-
provement due to smoothing the estimates was 59%. A fourth noise spike occurred 270
minutes into the problem and although this was not as large as the first three spikes
encountered, the filtered estimate is 46% better than the observed estimate and the
smoothed estimate is 78% better. Due to the relatively low amplitude of the Hall noise
model outside of the noise spikes, the filtered and smoothed position estimates show
only a minor improvement in time frame from six to nine hours. The small noise spike
at time 540 is pretty well smoothed out as seen in Figure 22. The average speed of the
target estimated by the filter is 21 knots and the speed estimated by the smoother is 16.4
knots.
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G. SCENARIO #6

This scenario depicts a 60° target maneuver to the northeast away from the two
tracking ships heading due north. The results for this scenario are shown in Figures
25-28. The white noise model is used in this simulation and because the relative distance
between the ships remains between 100 and 150 nm throughout the problem, the ob-
served position error remains on the order of 10-20 nm. This case demonstrates a gen-
eral improvement in the filtered and smoothed estimates over the entire track. The
position accuracy was increased by 25% with Kalman filter and by 45% using the fixed
interval smoothing routine. The smoother kept the track error at or below 8 nm for the
entire track interval with the exception of the first three observations to be smoothed
at times 600, 570, and 540. The average speed estimates for the filter and the smoother
were 17.1 knots and 16.6 knots respectivelv. Figure 28 shows the orientation of the
major axis lving in the north-south direction where the distance between the ships is the
largest. The magnitude of this axis is the largest at the beginning and the end of the
problem and at a minimum when the target maneuvers and ships are the closest to-
gether.
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H. SCENARIO #7

In this case, the Hall model was used to model the atmospheric noise. The results
for this scenario are shown in Figures 29-32. We can see three distinct noise spikes from
the error plot in Figure 30 at 120, 330, and 510 minutes. For each of these times, the
filtered estimate is better than the observed estimate and the smoothed estimate is the
most accurate of all. At other times, however, the filtered and smoothed estimate are
not the most accurate and in fact are sometimes (180, 360, & 450) much worse than the
observed error. The advantage to be gained by using the Kalman filter and the
smoothing routine in a case like this is the elimination of large, non-predictable errors
caused by the impulsive characteristics of atmospheric noise. The smoothed position
error remains between 2-11 nm throughout the problem while the filter position error
has a range of 2-28 nm and the observed position error varies from 3-38 nm. Figure 32
shows the overall accuracy of the smoothed track compared to the target’s true track.
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I. SCENARIO #8

This simulation uses the white noise model and includes two target maneuvers dur-
ing the problem. The results for this scenario are shown in Figures 33-36. The target
begins this scenario 150 nm due north and directly between the tracking ships on the y
axis. The target’s initial course is 000° at 15 knots. At time 180 the target turns
northwest to a new course 310° . At time 390 the target turns again to a new course
040° . The tracking ships are heading due north at 10 knots. Due to the geometry of
this scenario, the tracking routine is relatively accurate in the x direction with most of
the position error in the y direction. The accuracy in the x direction is reflected in the
small variance error values shown in Figure 35. For the first five hours of the problem
the improvement in the position accuracy due to the filter and the smoother was about
the same (40%:). During the second half of the problem, two large observation errors
are detected. In both instances the filter and the smoother improve on the position ac-
curacy, however, the because the observation error at 570 minutes is so large (140 nm),
the position errors for the filtered estimates and consequently the smoothed estimates
for the last two observations are also very large. The effect of these large bearing errors
is that the smoothed target track gives the impression that target has maneuvered and
turned north when it actuallv has not. This can be seen in Figure 36. The size of the
major axis of the error ellipses genecrated by the filtered and smoothed estimates also
increases when the estimated distance of the target from the tracking ships increases to
more than 220 nm by the end of the problem. The average target speed computed by
the Kalman filter is 32.3 knots and the smoothed speed is 23.5 knots.
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Figure 33.  Processed Data vs Observed Results
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J. SCENARIO #9

Scenario #9 duplicates Scenario #8 with the Hall model used to approximate the
atmospheric noise. The results for this scenario are shown in Figures 37-40. Figure 38
shows a large position error due to a noise spike 60 minutes into the problem. The fil-
tered track for this scenario follows the target’s true track, however, the position errors
vary from 4 to 28 nm over a ten hour tracking period. The smoother improves the po-
sition accuracy of the tracker in this problem by an average of more than 60%. The
smoothed track follows the target’s real track for the entire track period with no major
deviations as shown in Figure 40. The average filtered speed is 25 knots and the aver-
aged smoothed speed is 16.5 knots.
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Figure 40.  Scenario #9 Overall Track Results
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V. STORM TRACKING

A. GENERAL

The storm tracking scenario parallels the ship tracking problem in that both prob-
lems develop a position, course, and speed solution for a “target” with similar system
dynamics. Where the observations for the ship tracking problem were RDF lines-of-
bearing that resulted in a nonlinear measurement equation (2.5), the observations for the
storm tracking scenario are actual position coordinates given by latitude and longitude
values. The storm tracks used in this thesis were obtained from data collected at the
Joint Typhoon Warning Center located in Guam and run by the U.S. Navy and the U.S.
Air Force. The position coordinates were obtained using aircraft, satellite, and radar

reconnaissance assets.

B. SYSTEM AND MEASUREMENT MODELS
The tropical storms were modeled as linear, time distance systems where the state

relationships are given by

< 1 T o o]fx
i 010 o0}l
Ylen=lo o 1 T Y|t % (5.1)
y 000 1|V

where w, is a random forcing function with a covariance matrix given by the state
excitation matrix. ¢,. This is basically a fictitious noise source that prevents the error

covariance matrix from becoming singular. Q, is defined as

01 0 0 0
0 01 0 0

%=!0 o0 01 0 (5:2)
0 0 0 01

The measurement model utilizes the linear measurement equation given by equation
(2.6). Since the X and y position states are observed directly and given by the latitude

and longitude position coordinates, the measurement equation can be written as




X

Z 1 00 O}}x
[Z;]k-ﬂ = [0 01 0 ] ¥let v (5.3)
Y

where the measurement noise v, has a variance of + 1 nm.

C. STORM TRACKS

Typhoon Pat developed east of Taiwan in the western Pacific on 24 August 1985.
The Typhoon Warning Period for this storm was from 27 August until 1 September.
Over this six-day period the storm traveled 1337 nm with maximum wind speeds of over
95 knots. This storm caused significant damage in southwestern and northeastern
Japan; primarily on the islands of Kvushu and Hokkaido. [Ref. 11: pp. 64-68]}

Figure 41 shows the actual track of Typhoon Pat using the observed positions.The
storm track shown in Figure 42 was constructed using the fiitered and smoothed position
estimates obtained from the Kalman tracker. The observed storm positions are fairly
accurate and do not deviate from the overall track very much. Consequently, the filtered
and smoothed storm positions do not show a great deal of improvement overall. In the
arcas of the track where the observed positions do vary, the smoother does improve the
track accuracy. Specifically, these areas occur near 22° N, 126° E, and 37° N\, 133° E.

The second storm track analvzed was that of Typhoon Tess that originated south-
cast of Guam on 30 August 1983, The warning period for this storm lasted from 1
September until 6 September. Tess traveled 1470 nm over its” seven-day lifespan on a
track that took it over the Philippines. north of Luzon, and across the South China Sea
moving inland 170 nm south of Hong Kong. Maximum wind speeds for this typhoon
were over 75 knots. [Ref. 11: pp. 76-77)

The performance of the smoother on the track of Typhoon Tess was similar to that
of Typhoon Pat. Figure 43 shows Tess’s overall track and Figure 44 shows the track
results obtained with the Kalman filter and the smoothing algorithm. The Kalman
tracker and the smoother show some improvement in the track accuracy in the area of
15° N\, 123° E and 18.5° N\, 117° E.

The application of the Kalman filter tracker to the storm tracking problem would
be very useful in attempting to predict the storm'’s track when all the position data is not
available and the data that is available is not refined. Then, by using the filter and
smoothing routine, a more accurate track of the storm'’s past history can be calculated
allowing for a more accurate prediction of the storm’s future track.
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Figure 41.  Storm Track of Typhoon Pat
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Figure 42.  Filtered and Smoothed Track of Typhoon Pat
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VI. CONCLUSIONS

The purpose of this research was to improve the accuracy and maneuver detection
capability of an extended Kalman filter tracking routine by implementing a fixed interval
smoothing algorithm and a maneuver/divergence detection method that uses a noise
variance estimator process. The Hall atmospheric noise model was compared with a
white noise model in estimating the effects of atmospheric noise on the received HFDF
lines-of-bearing. Several different targeting scenarios were simulated and the accuracy
of the observed, the filtered, and the smoothed target tracks were analyzed and com-
pared.

The fixed interval smoothing algorithm improved the position accuracy of the target
in all the targeting scenarios simulated. Although the smoothed result was not always
the most accurate for everv observation, the smoother did improve the track accuracy
by an average of 40-60 percent over the observed target positions and by an average of
20-30 percent over the filtered estimates. The effectiveness of the smoother increased
as the target range increased. The cost of this improvement was the increased computer
time required to run the smoothing routine and for the simulations conducted, this in-
crease was on the order of approximately 60%o or 6-7 seconds when the program was run
on an IBM PS 2 Model 60 micro-computer.

The manecuver divergence detection scheme implemented worked well, however, be-
cause this process involves the addition of a time varying value of the state excitation
matrix, Q, to the a priori error covariance matrix, Py,_,,. there is a strong potential for
the filter to go unstable. This was observed when a very large noise impulse was en-
countered causing the observed line-of-bearing to change by more than 45° over one
observation. The major advantage gained in using this maneuver detection process is
that a maneuver is detected one observation after it occurs.

A white noise model is a relatively accurate model of the atmospheric noise over an
extended period of time, however, it fails to account for the impulsive nature of this
noise process. The Hall noise model corrects for this deficiency and was used in several
of the simulations. It was in the presence of these noise spikes that the operation of the
smoother was at its best. In virtually all of the simulations conducted, the smoothing
algorithm effectively eliminated the position errors due to a “wild” bearing caused by the
impulse noise. The improvement in the position estimate due to the smoother was
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commonly observed to be in the 75-83 percent range when a noise spike was encount-
ercd.

There are several areas of this problem to be investigated further. The first area of
investigation involves the divergence detection algorithm. Although the process used in
this thesis was able to detect a maneuver using one observation and accurately track a
mancuvering target, there are many factors that must be modified to fit a particular
noise environment and tracking scenario. These factors make this detection scheme
undesirable if not impossible to implement in a real world, real time tracking problem.
Another area for further research is adaptation of this tracking algorithm to a multiple
target environment. This is an area where some work has been done and would be of
great value in a ship tracking targeting scenario. In this type of problem, the ability to
identify a high value target in a convoy or battlegroup is very important as well as the
ability to identify any background shipping that is not to be attacked. The trend toward
increased emphasis on passive tracking and targeting techniques will make this area of

research highly interesting and very useful in the future.
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APPENDIX A. SHIPSM.FOR

This is a listing of the SHIPSM.FOR program used to generate the data for the target
tracks presented in this thesis. In order to run this program, the TRKDATA.DAT file
must be available. This file is created by running the TRACK.FOR program located in

Appendix B.

C SHIPSM.FOR

Covdededededededeicdese TO RUN sedededededededotenirdeoiedt

c

c 1) RUN TRACK
c 2) RUN SHIPSM
c

C#¥¥¥r FOR GRAPHICAL OUTPUT rkias

C 3) COPY ELLIP, ELLIPS ,FILDATA ,& SMDATA --> MATLAB SUB-DIR.

c 4) BEGIN MATLAB --> RUN SHIP

C

C  dedededededededededesovdodedeveredrdedederdeddtdedtdbededbab vt e v e e desbale bl deae ke e oeok

C THIS PROGRAM EMPLOYS AN ADAPTIVE EXTENDED KALMAN FILTER WITH A

C FIXED INTEKVAL SMOOTHING ALGORITHM TO TRACK A MANEUVERING SURFACE SHIP

C TARGET USING BEARINGS-ONLY RADIO DIRECTION-FINDING MEASUREMENTS FROM

C SEVERAL SPATIALLY DISTRIBUTED SENSORS.

C  dededevededeiededededededodededededededededeiviodededededodedodedededririnbdeiede o deiedrldnbdedede el et

C #*%*VARIABLE DEFINITIONS#¥%

c AK = SMOOTHING FILTER GAIN MATRIX

c AKT = TRANSPOSE OF AK

C BRG = MEASURED TARGET BEARING IN RADIANS

C BRKKM1 = PREDICTED TARGET BEARING MEASUREMENT IN RADIANS
C BRG(K|K-1)

C DBRG = MEASURED TARGET BEARING IN DEGREES

C DT = TIME DELAY BETWEEN OBSERVATIONS,T(K) - T(K1)
c DTOR = DEGREE TO RADIAN CONVERSION FACTOR

C E1l,E2 = MEASUREMENT RESIDUAL, Z(K) - H(X(K|K-1))

C E1M1,E2M1 = MEASUREMENT RESIDUAL AT PREVIOUS OBSERVATION
C E1M2,E2M2 = MEASUREMENT RESIDUAL TWO OBSERVATIONS PREVIQUS
C FAC1 = RECIPROCAL OF VARE

C G = KALMAN GAIN VECTOR

C GATE = 3*PREDICTED RESIDUAL STANDARD DEVIATION

C H = MEASUREMENT MATRIX

c HDG = ESTIMATED TARGET HEADING IN DEGREES

c HT = TRANSPOSE OF H

C I = COUNTER

C IMAT = 4 X 4 IDENTITY MATRIX

c J = COUNTER

c K = ITERATION INTERVAL

c LPKK = STATE COVARIANCE MATRIX AFTER PREVIOUS OBSERVATI
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c LPKKM1 = A PRIORI STATE COVARIANCE ESTIMATE
C LXKK = STATE ESTIMATE AFTER PREVIOUS OBSERVATIONS
c LXKKM1 = A PRIORI STATE ESTIMATE
c PHI = DISCRETE-TIME STATE TRANSITION MATRIX
c PHIT = TRANSPOSE OF PHI
c PI = 3.141592654
- c PKK = ESTIMATION ERROR COVARIANCE MATRIX, P(K|K)
c PKKS = SMOOTHED ERROR COVARIANCE MATRIX
C PKKM1 = PREDICTED ESTIMATION ERROR COVARIANCE MATRIX, P(
. C PKKM1S = PREDICTED ERROR COVARIANCE MATRIX FOR SMOOTHING,
c IPKKM1S = INVERSE OF PKKM1S
c PSS = ERROR COVARIANCE MATRIX FOR SMOOTHING, P(K|K)
c Q = STATE EXCITATION MATRIX
c R = MEASUREMENT NOISE COVARIANCE
c RANGE = DISTANCE FROM SENSOR TO A PRIORI TARGET POSITION
c RTOD = RADIAN TO DEGREE CONVERSION FACTOR
c SPD = ESTIMATED TARGET SPEED IN KNOTS
c TEMP = TEMPORARY STORAGE MATRICES USED IN MATRIX
c OPERATIONS
C VARE = VARIANCE OF RESIDUALS PROCESS
c XDIFF = DISTANCE IN X DIRECTION FROM SENSOR TO A PRIORI
c TARGET POSITION
c XKK = ESTIMATED TARGET STATE VECTOR, X(K|K)
C XKKS = SMOOTHED TARGET STATE VECTOR
c XKKM1 = PREDICTED TARGET STATE VECTOR, X(K|K-1)
c XKKM1S = PREDICTED TARGET STATE VECTOR FOR SMMOTHING, X(K
C XPOS = ESTIMATED TARGET POSITION IN X DIRECTION
c XS = SENSOR POSITION IN X DIRECTION
. C. XSS = TARGET STATE VECTOR FOR SMOOTHING, X(K|K)
C XT = TRUE TARGET POSITION IN X DIRECTION
c YDIFF = DISTANCE IN Y DIRECTION FROM SENSOR TO A PRIORI
C TARGET POSITION
- C YPOS = ESTIMATED TARGET POSITION IN Y DIRECTION
C YS = SENSOR POSITION IN Y DIRECTION
c YT = TRUE TARGET POSITION IN Y DIRECTION
C ZX = OBSERVED POSITION IN X DIRECTION
c Y = OBSERVED POSITION IN Y DIRECTION

C VARIABLE DECLARATIONS
REAL*4 XKK(4,1),XKKM1(4,1),LPKKM1(4,4),LXKKM1(4,1),PHI(4,4)
REAL*4 H(1,4),6(4,1),TEMP1(1,4),TEMP2(1,1),TEMP3(4,1)
REAL*4 TEMP4(4,4),TEMP5(4,4) ,PKK(4,4),PKKM1(4,4),HT(4,1)
REAL*4 LXKK(4,1),LPKK(4,4),XS(10),YS(10),DBRG(10),BRG(10)
REAL*4 TEMP6(4,4),PHIT(4,4),IMAT(4,4),TEMP7(4,4) ,XT,YT
REAL*4 GATE(2),VARE(2),E(2),TEMP8(4,1),XE(1000),YE(1000)
REAL*4 GATE1,GATE2
REAL*4 DT,XDIFF,YDIFF,RANGE,XS1,YS1,BRG1,BRKKM1,Q(4,4)
REAL*4 OBSERR(50),FAC1,SIGTH2,SIGVT2,R,ETOTAL,EAVG,RTOD
REAL*4 X2,YS2,BRGZ2,2X,2Y,M1,E1,E1M1,E1M2,DTOR, TRKERR(50)
REAL*4 M2,E2,E2M1,E2M2,G11,G13,G21,G23,2ZXM1,2ZYM1,TEMP9(4,2)
REAL*4 XKKS(4,1,50),PKKS(4,4,50),SPD(50),SSPD(50) ,PMMS(4,4,50)

. REAL*4 XNNM1(4,1),XSS(4,1),XKKM1S(4,1),XMMS(4,1,50)
REAL*4 PNNM1(4,4),PSS(4,4),PKKM1S(4,4),IPKKM1S(4,4)
REAL*4 AK(&4,4),AKT(4,4),11(4,4),STRKERR(50),DTS(50)
REAL*4 TEMP1S(4,4),TEMP2S(4,1),TEMP3S(4,1)

) REAL*4 TEMP4S(4,4),TEMP5S(4,4) ,TEMP6S(4,4)
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REAL*4 XP(21),YP(21),XPS(21),YPS(21)
INTEGER*2 TIME,TIMEM1,NP,GTCTR

C OPEN OUTPUT DATA FILES

OPEN(UNIT=2,FILE='TRKDATA. DAT' ,STATUS='0LD"')
OPEN(UNIT=3,FILE='OUTDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=4,FILE='TRUDATA. DAT' ,STATUS="NEW')
OPEN(UNIT=5,FILE='FILDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=6 ,FILE='SMDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=7,FILE='ELLIP. DAT' 'STATUS='NEW' )
OPEN(UNIT=8,FILE="'ELLIPS. DAT ‘STATUS=' NEW' )
OPEN(UNIT=9 ,FILE="RESULTS. DAT' ,STATUS='NEW')
OPEN(UNIT=10,FILE='RESIDU. DAT',STATUS='NEW')

C RADIAN/DEGREE CONVERSION FACTORS
RTOD=57.29577951
DTOR=0. 01745293

C COMPUTE &4X4 IDENTITY MATRIX
DO 5 I=1,4
DO 5 J=1,4
IF (I.EQ.J) THEN
IMAT(I,J)=1.0
ELSE
IMAT(I,J)=0.0
ENDIF
5 CONTINUE

C INITIALIZE TIME CQUNTER
TIMEM1=0
NP=1
GTCTR=0

C COMPUTE BEARING MEASUREMENT COVARIANCE
C BEARING ERROR STANDARD DEVIATION = 3 DEGREES
R=(3*DTOR)**2

C e oo T deses e dedere e st et etk v e e ek de e ikt

C READ IN OBSERVATION PACKET (TIME, # OF SENSORS)
C DT=TIME(K)-TIME(K-1)

WRITE(*,*)'FILTERING TRACK DATA WITH KALMAN FILTER'
WRITE(*,*)'***--'-***'
810 READ(2,1001,END=800)TIME,XT,YT,XS(1),YS(l),DBRG(l),
% XSs(2),YS(2),DBRG(2)
1001 FORMAT(14,8F9.4)

DO 200 L=1,2
IF (DBRG(L).GT. 180.0) DBRG(L)=DBRG(L)-360
BRG(L)=DBRG(L)*DTOR
200 CONTINUE

IF (TIME.LT.0) GOTO 800
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DT=TIME-TIMEM1
DTS(NP)=DT

CALL FINDPHI(PHI,DT)

- XS1=XS8(1)
YS1=YS(1)
XS52=X8(2)
YS2=YS8(2)

- BRG1=BRG(1)
BRG2=BRG(2)

CALL MP(XS1,YS1,Xs2,YS2,BRG1,BRG2,ZX,ZY)

IF(TIME.EQ.O0) THEN
CALL INIT(XS1,YS1,XS2,YSs2,BRG1,BRG2,XKK,PKK)

c WRITE(3,%*)'X(0}0,0):"'
DO 601 I=1,4
LXKK(I,1)=XKK(I,1)
c WRITE(3,*)XKK(I,1)
601 CONTINUE
c WRITE(3,%)'P(0]0,0):"'
DO 602 I=1,4
DO 602 J=1,4
LPKK(1,J)=PKK(I,J)
C WRITE(3,401)PKK(I,J)
° 401 FORMAT(4F14. &)
602 CCNTINUE
. ENDIF

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES
c X(K+1|K) = PHI * X(K|K)
CALL MATMUL(PHI,XKK,4,4,1,XKKM1)

c WRITE(3,*)'X(',TIME,"|',TIMEM1,",0): "
DO 603 I=1,4
c WRITE(3,*)XKKM1(I,1)
LXKKM1(I,1)=XKKM1(I,1)
603 CONTINUE
c P(K+1|K) = (PHI * P(K|K) * PHIT) + Q

CALL MATRAN(PHI,PHIT,4,4)
CALL MATMUL(PHI,PKK,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)
CALL GETQ(DT,XKKM1,Q,1)
CALL MATADD(TEMP4,Q,4,4,1,PKKM1)
. DO 408 I=1,4
DO 408 J=1,4
LPKKM1(1,J)=PKKM1(I,J)
408 CONTINUE




398

402
604

204

(9]

WRITE(3,*)'P(',TIME,'|',TIMEM1,',0):"'

DO 398 I=1,4
WRITE(3,%)(PKKM1(1,J),J=1,4)
CONTINUE
WRITE(3,*)'qQ(',TIME,'|',TIMEM1,',0):"
DO 604 I=1,4

WRITE(3,*)(Q(I,J),J=1,4)
FORMAT(4F14. 4)
CONTINUE

CONTINUE
DO 210 L~1,2

CALCULATE RANGE TO TARGET

XDIFF=XKKM1(1,1)-XS(L)
YDIFF=XKKM1(3,1)-YS(L)
RANGE=SQRT(XDIFF#**2+YDIFF**2)

C UPDATE H MATRIX WITH LATEST STATE ESTIMATES

H(1,1)=YDIFF/RANGE*¥*2
H(1,2)=0.0
H(1,3)=-XDIFF/RANGE**2
H(1,4)=0.0

WRITE(3,%)'H MATRIX:'
WRITE(3,*)(H(1,I),I=1,4)

C COMPUTE OBSERVATION RESIDUAL

aoa

aoOan

399

BRKKM1=ATAN2(XDIFF,YDIFF)

E(L)=BRG(L)-BRKKM1

WRITE(3,*) 'MEASURED BEARING = ' ,(BRG(L)
WRITE(3,%*)'PREDICTED BEARING = ',BRKKM1
WRITE(3,%)'BEARING RESIDUAL OF SENSOR ',L,' = ',E(L)

COMPUTE VARIANCE OF RESIDUALS SEQUENCE
AND ADAPTIVE GATE VALUE

VAR(E )=H*PKKM1*HT+R
CALL MATRAN(H,HT,1,4)
CALL MATMUL(H,PKKM1,1,4,4,TEMP1)
CALL MATMUL(TEMP1,HT,1,4,1,TEMP2)
VARE(L)=TEMP2(1,1)+R
WRITE(3,*)'VARIANCE OF RESIDUALS = ',TIME,VARE(L)
GATE(L)=3. 0*SQRT(VARE(L))

DO 399 I=1,4

WRITE(3,*)(PKKM1(I,J),J=1,4)

CONTINUE

C COMPUTE KALMAN GAIN MATRIX

c

G=PKKM1*HT*( H*PKKM1*HT+R)**-1
CALL MATRAN(H,HT,1,4)
CALL MATMUL(PKKM1,HT,4,4,1,TEMP3)
WRITE( 3,%) ' PKKM1*HT ='
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DO 414 I=1,4
c WRITE(3,*)TEMP3(I,1)
414 CONTINUE

FAC1=1/VARE(L)
CALL MATSCL(FAC1,TEMP3,4,1,G)
c WRITE(3,*)'G ='
DO 613 I=1,4
WRITE(3,*)G(I,1)
613 CONTINUE

IF (L.EQ.1) THEN
G11=G(1,1)
G13=G(3,1)

ELSE
G21=G(1,1)
G23=G(3,1)

ENDIF

C COMPUTE UPDATED ERROR COVARIANCE MATRIX

c P(K|X) = (I - G*H) * P(K|K-1)
CALL MATMUL(G,H,4,1,4,TEMP4)
Cc WRITE(3,*)'G*H ='
DO 419 I=1,4
c WRITE(3,418)(TEMP4(I,J),J=1,4)
418 FORMAT(4F14. 4)
419 CONTINUE
CALL MATSUB(IMAT,TEMP4,4,4,TEMPS)
o WRITE(3,%)'I-G*H ="
DO 413 I=1,4
o WRITE(3,415)(TEMP5(1,J),J=1,4)
415 FORMAT(4F14. 4)
413 CONTINUE
CALL MATMUL(TEMP5,PKKM1,4,4,4,PKK)
c WRITE(3,*)'P(',TIME,'|',TIME,"',',L,"):"'
DO 606 I=1,4
c WRITE(3,406)(PKK(I,J),J=1,4)
406 FORMAT(4F14. 4)
606 CONTINUE
C SAVE LATEST RESIDUALS & ADAPTIVE GATES
E1=E(1)
E2=E(2)

GATE1=GATE(1)
GATE2=GATE(2)

WRITE(10,900)TIME,ABS(E1),ABS(E2),GATE1,GATE2
900 FORMAT(14,4F10.5)

C CCMPARE BEARING ERRORS TO MANEUVER DETECTION GATES

IF (ABS(E(L)).GT. (GATE(L))) THEN
GTCTR=GTCTR+1
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WRITE(%,%)'*%* MANEUVER DETECTION GATE EXCEDED **'
WRITE(%*,*)'TIME' ,TIME

c WRITE(3,%*) ¥ MANEUVER DETECTION GATE EXCEDED ¥’
C WRITE(3,*)'TIME',TIME
CALL GETQ(DT,XKKM1,Q,0)
c CALL MATADD(PKKM1,Q,4,4,1,PKKM1)
IF (GTCTR.EQ.3) THEN
GTCTR=0

WRITE(%,%) '%%¥% MANEUVFR DETECTION W'
WRITE(*,*)'TIME' ,TIME
C WRITE(3,%) 's¥%* MANEUVER DETECTION ¥’
c WRITE(3,*)'TIME' ,TIME
CALL REINIT(DT,ZX,Z2Y,ZXM1,ZYM1,LPKKM1,XKKM1,PKKM1)
CALL GETQ(DT,XKKM1,Q,1)
ELSE
GOTO 204
ENDIF
ENDIF
GTCTR=0

C COMPUTE UPDATED ESTIMATE

c X(K|K) = X(K|K-1) + G * E, WHERE E = Z(K) - H(K)*X(K|K-1)
XKK(1,1)=XKKM1(1,1)+(G(1,1)*E(L))
XKK(2,1)=XKKM1(2,1)+(G(2,1)*E(L))
XKK(3,1)=XKKM1(3,1)+(G(3,1)*E(L))
XKK(4,1)=XKKM1(4,1)+(G(4,1)*E(L))

c WRITE(3,*)'X(',TIME,"|',TIME,',",L,"):"
DO 605 I=1,4

o WRITE(3,*)XKK(I,1)

605 CONTINUE

C IF MORE MEASUREMENTS,
IF (L.LT.2) THEN
C USE UPDATED STATE AND ERROR COVARIANCE ESTIMATES
c FOR NEXT MEASUREMENT
DO 150 I=1,4
DO 150 J=1,4
PKKM1(I,J)=PKK(I,J)
XKKM1(I,1)=XKK(I,1)
150 CONTINUE
ENDIF
210 CONTINUE

C THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM

DO 620 I=1,4
XKKS(I,1,NP)=XKK(I,1)
620 CONTINUE

DO 630 I=1,4
DO 630 J=1,4
PKKS(I,J,NP)=PKK(I,J)
630 CONTINUE
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C COMPUTE TRUE TRACKING AND OBSERVATION ERRORS
TRKERR(NP)=SQRT( ( XT-XKK(1,1))**2+(YT-XKK(3,1))%*¥2)
OBSERR(NP)=SQRT( (XT=-ZX)¥*¥*2+(YT-2Y)**2)

C COMPUTE ERROR ELLIPSE DATA
CALL ELLIP(XKK(1,1),XXK(3,1),PKK(1,1),PKK(3,3),PKK(1,3),XP,YP)
DO 640 IE=1,21
WRITE(7,*)XP(IE),YP(IE)
640 CONTINUE

C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED
XPOS=XKK(1,1)
YPOS=XKK(3,1)
IF (XKX(2,1).EQ.0 .AND. XKK(4,1).EQ.0) THEN
HDG=0. 0
ELSE
HDG=RTOD*ATAN2(XKK(2,1) ,XKK(4,1))
ENDIF
I¥ (HDG.LT.O0.0) HDG=HDG+360
SPD(NP)=60*SQRT(XKK(2,1)**2+XKK(4,1)%%2)

C WRITE(*,*) 'FILTERED DATA FOR DATA POINT',NP
WRITE(3,*) 'FILTERED DATA FOR DATA POINT',NP

C WRITE(*,*) 'TIME X POS Y POS HEADING SPEED'
WRITE(3,*) ' TIME X POS Y POS HEADING SPEED'

C WRITE{*,10C2)TIME,XPOS,YPOS ,HDG,SPD(I)

WRITE(3,1002)TIME,XPOS,YPOS,HDG,SPD(I)
WRITE(4,1003)TIME,XT,YT
WRITE(5,1004)TIME,NP,XPOS,YPOS,2X,2Y,TRKERR(NP) ,0BSERR(NP),

PKK(1,1),PKK(3,3),XT,YT

c WRITE(5,*)TIMNE,XT,YT,XPOS,YPOS,2X,2Y,LXKKM1(1,1) ,LXKKM1(3,1),

c = ABS(M1),GATE1(1),ABS(M2),GATE1(2),

c G11,G13,621,623,TRKERR,OBSERR

1002 FORMAT(14,8FS.1,8F8.5,2F8. 1)

1003 FORMAT(I4,2F8.1)

1004 FCRMAT(214,10F8.1)

1005  FORMAT(I4,4F8. 1)

C UPDATE DATA COUNTER

TIMEMI=TIME

ZXM1=ZX
2YMN1=2Y

GCTO 810

800 NP=NP-1

C THIS IS WHERE THE SMOOTHING ALGORITHM STARTS

C FIXED INTERVAL SMNOOTHING
WRITE(*,%) ' SMOOTHING FILTERED DATA WITH A'
WRITE(*,*) 'FIXED INTERVAL SMOOTHING ALGORITHM'
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WRITE(™,%) T eedemmm et !
C WRITE(* %) " #ideiid SMOOTHING STARTS HERE dririrdiciok !
WRITE( 3 , 7':) Ve SMOOTHING STARTS HERE Fedededededede!

DO 1000 KK=1,NP-1
=NP-KK

DT=DTS(K+1)

TIME=TIMEM1-DT
CALL FINDPHI(PHI,DT)

DO 901 I=1,4
XSS(I,1)=XKKS(I,1,K)
901 CONTINUE
DO 902 I=1,4
DO 902 J=1,4
PSS(I,J)=PKKS(I,J,K)
902 CONTINUE

C CALCULATE THE PREDICTED STATE AND ERROR COVARIANCE MATRICES
c X(K+1|K)=PHI*X(K]|K)

CALL MATMUL (PHI,XSS,4,4,1,XKKM1S)
c P(K+1|K)=PHI*P(K|K)*PHIT+Q

CALL MATRAN (PHI,PHIT,4,4)

CALL MATMUL(PHI,PSS,4,4,4,TEMP6)

CALL MATMUL(TEMP6,PHIT,4,4,4,TEMPS)

CALL GETQ(DT,XKKM1S,Q,1)

CALL MATADD(TEMP4,Q,4,4%,1,PKKM1S)

C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=P(K|K)*PHIT*INV°P(K+1|K)
CALL MATINV (PKKM1S,4,IPKKM1S)
CALL MATMUL (PKKM1S,IPKKM1S,4,4,4,1I1)
CALL MATMUL (PSS,PHIT,4,4,4,TEMPLS)
CALL MATMUL (TEMP1S,IPKKM1S,4,4,4,AK)

DO S04 I=1,4
XNNM1(I,1)=XKKS(I,1,K+1)
904 CONTINUE

C CALCULATE THE SMOOTHED STATE ESTIMATE

C  XKKS=X(K|K)+AK*(X(K+1|N)-X(K+1|K)
CALL MATSUB (XNNM1,XKKM1S,&,1,TEMP2S)
CALL MATMUL (AK,TEMP2S,4,4,1,TEMP3S)
CALL MATADD (XSS,TEMP3S,4,1,K,XKKS)

DO 906 I=1,4
DO 906 J=1,4
PNNM1(I,J)=PKKS(I,J,K+1)
906 CONTINUE

C CALCULATE THE SMOOTHED COVARIANCE MATRIX
C  PKKS=P(K|K)+AK*[ P(K+1|N)=-P(K+1|K)] *AKT

74




CALL MATSUB (PNNM1,PKKM1S,4,4,TEMP4S)
CALL MATRAN (AK,AKT,4,4)

CALL MATMUL (AK,TEMP4S,4,4,4,TEMPSS)
CALL MATMUL (TEMPSS,AKT,4,4,4,TEMP6S)
CALL MATADD (PSS,TEMP6S,4,4,K,PKKS)

C TOMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED
SXPOS=XKKS(1,1,K)
SYPOS=XKKS(3,1,K)
IF (XKKS(2,1,K).EQ.0 .AND. XKKS(4,1,K).EQ.0) THEN
SHDG=0. 0
ELSE
SHDG=RTOD*ATAN2(XKKS(2,1,K),XKKS(4,1,K))
ENDIF
IF (SHDG. LT.0.0) SHDG=SHDG+360
SSPD(K)=60*SQRT(XKKS(2,1 LK) **24XKKS(4,1 1 K)#%2)
C WRITE(*, w) SMOOTHED DATA FOR DATA POINT' K
WRITE(3,%)'SMOOTHED DATA FOR DATA POINT',K
C WRITE(*,*)'TIME X POS Y POS HEADING SPEED'
WRITE(3,*)'TIME X POS Y POS HEADING SPEED'
C WRITE(*,1010)TIME,SXP0OS,SYPOS, SHDG,SSPD(K)
WRITE(3,1010)TIME,SXPOS,SYPOS, SHDG, SSPD(K)

C WRITE(*,1020)NP,K,XKKS(1,1,K),XKKS(3,1,K),PKKS(1,1,K)
1010 - FORMAT(I4,8F8.1,8F8.5,2F8.1)
1020 FORMAT(2I4,3F8.1)

TIMEM1=TIME
1000 CCNTINUE

REWIND 4

C CALCULATE THE SMOOTHED TRACKING ERROR
WRITE(9,%) "'ERROR DATA FOR DATA POINT TRACKING ROUTINE'
WRITE(9,)'K  OBSERR TRKERR STRKERR FILSPD SMSPD'
DO 1100 K=1,NP
SXPOS=XKKS(1,1,K)
SYPOS=XKKS(3,1,K)
READ(4,1110)TIME,XT,YT
STRKERR(K)=SQRT( (XT-XKKS(1,1,K))%**2+(YT-XKKS(3,1,K))%*2)
C COMPUTE ERROR ELLIPSE DATA
CALL ELLIP(XKKS(1,1,K),XKKS(3,1,K),
%* PKKS(1,1,K),PKKS(3,3,K),PKKS(1,3,K),XPS,YPS)
DO 1050 IE=1,21
WRITE(8,*)XPS(IE),YPS(IE)
1050  CONTINUE
WRITE(6,1120)K,SXP0OS,SYPOS,STRKERR(K),
* PKKS(1,1,K),PKKS(3,3,K)
WRITE(9,1130)K,0BSERR(K) , TRKERR(K) , STRKERR(K) , SPD(K) , SSPD(K)
1100  CONTINCE
1110  FORMAT(14,2F8. 1)
1120  FORMAT(14,5F8.1)
1130  FORMAT(I14,5F8.1)

CLOSE(UNIT=2)

CLOSE(UNIT=3)
CLOSE(UNIT=4)
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CLOSE(UNIT=5)
CLOSE(UNIT=6)
CLOSE(UNIT=7)
CLOSE(UNIT=8)
CLOSE(UNIT=9)
CLOSE(UNIT=10)

WRITE(*,%*)'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE'
WRITE(*,*)'DATA FILE OUTDATA.DAT. FOR GRAPHIC RESULTS COPY'
WRITE(*,*)' 1) ELLIP.DAT'

WRITE(*,*)' 2) ELLIPS.DAT'

WRITE(*,*)' 3) FILDATA.DAT'

WRITE(*,*)' 4) SMDATA.DAT'

WRITE(*, *)' 5) TRUDATA. DAT'

WRITE(*,*)'TO THE MATLAB SUB-DIRECTORY AND RUN ==>SHIP. M. "'
WRITE(*,*)'THERE WERE',NP, OBSERVATIONS PROCESSED.'

STOP

END

Crevededededededededodedodedodedodedodeodode s de oot b dbddr o de v dnbsbbdesb sk drsb ol bbb

C SUBROUTINES
Crededsdedevedrvededededevedeedededevededodediededevidevede e dedvede v dr b e v vt skl e s abde sk d e dede v dededtest

S BROuTIhE FI\DPHI(PHI DT)

C  devededededeveedieive B e e e e S s B S e e s e
C COHPLTES THE VALUES OF THE PHI MATRIX
C Yededevededede Sedeievedeieieiededtedededrievedtdn e dededededededede dededededede e dede e

REAL 4 PHI(4 4),DT

DO 1561 I=1,4
DO 1501 J=1,4
DO 1501 K=1,2
PHI(I,J)=0.0
1501 CONTINUE

C COMPUTE PHI MATRIX
DO 1500 I=1,4
PHI(I,I)=1.0
1500 CONTINUE
PHI(1,2)=DT
PHI(3,4)=DT

RETURN

END

SUBROUTINE INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)
C Fedededededededededsdededededededededededodevededededededededevediededevedovevedevededede
C THIS ROUTINE INITIALIZES THE STATE
c AND ERROR COVARIANCE ESTIMATES
C Feledededededededodedeiedeiodedvioiriedededviedvdevededodedededodevededededetededededeke
REAL*& XKK(4,1),PKK(4,4)
REAL*4 XS1,YS1,X82,YS2,BRG1,BRG2
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REAL*4 NUMER,DENOM

C INITIAL STATE ESTIMATE

NUMER=( -YS2*TAN(BRG2))+(YS1*TAN(BRG1))+XS2-XS1
DENOM=TAN(BRG1)-TAN(BRG2)

XKKX(3, 1)=NUMER/DENOM

XKK(2,1)=0.0
XKK(1,1)=(XKK(3,1)-YS1)*TAN(BRG1)+XS1
XKK(4,1)=0.0

C INITIAL ERROR COVARIANCE ESTIMATE

.............
iy

100

PKK(1,1)=10000
PKK(1,2)=0.
PKK(1,3)=0.
PKK(1,4)=0.
PKK(2,1)=0.
PKK(2,2)=0.
PKK(2,3)=0.
PKK(2,4)=0.
PKK(3,1)=0.
PRK(3,2)=0.
PKX(3,3)=10000
PKK(3,4)=0.0

PKK(4,1)=0.0

PKK(4,2)=0.0

PKK(4,3)=0.0

PKK(4,4)=0. 2500

OOOO{;)'OOOO
o
o

RETURN
END

SUBROUTINE GETQ(DT,XKKM1,Q, FLAG)

s Srsrves ey Teve vy Yoy Yo v sy Yot 3’ SeTrvr s Yr ek Yeseardedesk e ve vk vedbab ookt
ROLTI\E TO GET Q MATRIX WHERE

Q= GAMA(K) *Q' (K)* GAYAT(K)

e e e e e e e e Ve e Ve s e e T T Yo Y Y e s v v st v e v sk d e i ab e e dbe el
REAL 4 DT XKKM1(4,1), Q(4 4)

REAL*™4 QPR(Z 2), GAMA(A 2),GAMAT(2,4)

REAL*4 SIGVTZ,SIGTHZ,VT

INTEGER FLAG

IF ((XKKM1(2,1).EQ.0).OR. (XKKM1(4,1).EQ.0)) THEN
DO 100 I=1,4
DO 100 J=1,4
Q(I,J)=0.0
GOTO 200
ENDIF

C CALCULATE Q'MATRIX

SIGVT2=0. 0001
SIGTH2=0.01096
VT=SQRT(XKKM1(2,1)**2+XKKM1(4&,1)**2)
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QPR(1,1)=(((XKKM1(2,1)/VT)**2)*SIGVT2)+( (XKKM1(4,1)**2)*SIGTH2)
QPR(2,2)=(((XKKM1(4,1)/VT)¥*¥*2)*SIGVT2)+( (XKKM1(2,1)**2)*SIGTH2)
QPR(1,2)=((XKKM1(2,1))*(XKKM1(4,1))/(VT#**2))*SIGVT2
* -(XKKM1(2,1) )*(XKKM1(4,1))*SIGTH2
QPR(2,1)=QPR(1,2)
IF (FLAG.EQ.0) THEN
QPR(1,1)=2.50%QPR(1,1)
QPR(2,2)=2. 50%*QPR(2,2)
ENDIF

C CALCULATE GAMA MATRIX
GAMA(1,1)=(DT%*¥*2)/2.0
GAMA(2,1)=DT
GAMA(3,1)=0.0
GAMA(4,1)=0.0
GAMA(1,2)=0.0
GAMA(2,2)=0.0
GAMA(3,2)=(DT**2)/2.0
GAMA(4,2)=DT

C Q=GAMA(K)*Q' (K)*GAMAT(K)
CALL MATRAN(GAMA,GAMAT,4,2)
CALL MATMUL(GAMA,QPR,4,2,2,TEMP9)
CALL MATMUL(TEMPS,GAMAT,4,2,4,Q)
CALL MATSCL(0.01,Q,4,4,Q)

200 RETURN

END

SUBROCTINE REINIT(DT,ZX,2Y, ZXMl ZYM1,LPKKM1,XKKM1 PKKMI)
C Fededededededededelevededededededededededededededededede -‘“’ -'r* s’n’- e 4-7'"'#-:4 Yedeed :*3‘: Vet '"-’ Fedevedevet
C THIS ROLTIVE RE-INITIALIZES THE STATE AND ERROR
C CO\ARIAVCE ESTIMATES
C J --J lontastonte: .. st --- -- .! -. .J ... J J-J .J J " J‘s .L’! Jf.’- wta J-def.--lr*d +- -' -I-J J JrJ-J‘-L”.Jf.I-J‘*J-J‘*J:Jr
REALn» DT,XKKMl(Q,l),PKKM1(4,4)
REAL*& ZX,Z2Y,2XM1,2YM1,LPKKM1(4,4)

XDIFF=ZX-ZXM1

YDIFr=2Y-2YM1

IF (DT.EQ.0) THEN
XKKM1(1,1)=2X
XKKM1(2,1)=XDIFF
XKKM1(3,1)=2Y
XKKM1(4,1)=YDIFF

ELSE
XKKM1(1,1)=2X
XKKM1(2,1)=XDIFF/DT
XKEM1(3,1)=2Y
XKKM1(4,1)=YDIFF/DT

ENDIF

c WRITE(3,%*)'REINITIALIZED STATES ARE:'
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DO 100 I=1,4
c WRITE(3,*)XKKM1(I,1)
100 CONTINUE

PKKM1(1,1)=LPKKM1(1,1)
PKXM1(1,2)=0.0
PKKM1(1,3)=LPKKM1(1,3)
PKKM1(1,4)=0.0
PKKM1(2,1)=0.0
PKKM1(2,2)=0. 1111
PKKM1(2,3)=0.0
PKKM1(2,4)=0.0
PKKM1(3,1)=LPKKM1(3,1)
PKKM1(3,2)=0.0
PKKM1(3,3)=LPKKM1(3,3)
PKKM1(3,4)=0.0

PKKM1(4,1)=0.0
PKKM1(4,2)=0.0
PKKM1(4,3)=0.0
PKKM1(4,4)=0.1111
RETURN
END
SUBROUTINE MP(XSl YSl Xs2,YS2,BRG1,BRG2,ZX,ZY)
G Sededesedederdeevede sl Yeiadede s 7‘-1-'-"-‘- *- Saitisr] 1"“:"3\'“ Jededrdey *w'a‘ﬂnnn“h‘c-\'s'n'u‘f
C ””IS ROCUT IVE COMPUTES THE ESTIMATED
G \ & POSLTION OBTAINED FROM MEASUREMENTS
G wedededededede Fedede TS veve v e e deve e Yo v s e e ale s ave st e e dedle sk v ek vk ek
PE‘T“’ ZX ZY

REAL*4 XS1,Y51,XS2,YS2,BRG1,BRG2
REAL*4 NLVER,DENOM

C INITIAL STATE ESTIMATE

NUMER=( -YS2*TAN(BRG2) )+(YS1*TAN(BRG1) )+X82-XS1
DENOM=TAN(BRG1)-TAN(BRG2)

ZY=NUMER/DENOM
ZX=(ZY-YS1)*TAN(BRG1)+XS1

RETURN

END

SUBROUTINE ELLIP(XT,YT,P1,P3,P13,XP,YP)

C  Fededededededededededededededdedriododadodedededsdedededededededededededededeiviviviohdeiododokek
C THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA

C FROM ERROR COVARIANCE DATA

C evededevedededededededededededededevedededededededevedededodedededs Redededededededededededededededede
C DIMENSIONS AND DECLARATIONS

REAL*4 XT,YT,XP(21),YP(21),A,B,THE1,SIG2X,SIG2Y
REAL*4 SX,SY,PT,CT,ST,P1,P13,P3
INTEGER*2 NP
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A=2%P13

B=P1-P3

THE1=0. 5%*ATAN2(A,B)

A=(P1+P3)/2

B=0.0

IF (P13.EQ.0.0) GOTO 10

B=P13/SIN(2. 0*THE1l)
10 SIG2X=ABS(A+B)

SIG2Y=ABS(A-B)

SX=81G2X*¥*0. 5

SY=SIG2Y**0. 5

PT=3. 141592654/10

CT=COS(THE1)

ST=5IN(THE1)

DO 100 IE=1,21
XP(IE)=8X*COS(PT*IE)*CT-SY*SIN(PT*IE)*ST+XT
YP(IE)=SX*COS(PT*IE)*ST+SY*SIN(PT*IE)*CT+YT

100 CONTINUE

RETURN
END

SUBROUTINE MATWUL(A B L, M N,C)
Sedededeed Sevevede -’----.r-" et '-' " Yetededevededevedededededededededeodede
TFIS POUTIV VULTIPLIES TWO MATRICES TOGETHER
' C(L,N) = A(L,M) * B(Y,N)
Pedfevedevevevey! Jedededededeededevededededevedededededededeede
DIWE\SIO\S AND DECLARATION
REAL*4 A(L,M),B(M,N),C(L,N)

Qaaoan

C(I1,J)=
10 COhTI\UE

DO 100 I=1
DO 100 J=1
DO 100 K= 1
C(1,J) =¢C
100 CONTINUE

, L
,N
M
(I1,J) + A(I,K)*B(K,J)
RETURN

END

SUBROUTINE MATRAN(A,B,N,M)
G Yededededededededededededededededededevededededeivevededededededsdriedededede R

C THIS ROUTINE TRANSPOSES A MATRIX

o ® B(M,N) = A (N, M)

C  Iedededededededededededededededededededededodevedededeledededevevededevededodete
C DIMENSIONS AND DECLARATIONS




REAL*4 A(N,M), B(M,N)
DO 100 I= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)
- 100 CONTINUE
RETURN

END

SUBROUTINE MATSCL(Q,A,N,M,C)
C Fedededesededeesedededeiodededriedededoiedeieirierinidiciieieoiiririordeiiod doior ook

C THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
C ® G(N,M) = Q * A(N,M)
G Fededededededodedeedededledededbaededidedededededrdbdedee e dedriedededbabedde e dederb e et e dedede e ek
C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), C(N,M), Q
DO 100 I = 1,N
DO 100 J =1,M
- C(I,J) = Q*A(I,J)

100 CONTINUE

RETURN

- END

SUBROLTI\E MATSUB(A B N,M,C)

G edestdevededevinede Tueveve e ve e e v e e e *v%-*%-****%x*****
C THIS ROUTINE SUBTRACTS TwO MATRICES
C ¢ C(\ M) = A(N M) - B(N,M)
G Fededeiedele “v"""vr' TYeveveYevrevevevevevede e vtk e v Yo shdevevedkse
C DIMENSIONS AVD DECLARATIONS

REAL*4  A(N,M),B(N,M),C(N,M)

DO 100 I = 1,N

DO 100 J = 1,M

C(1I,J)=A(I,J)-B(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATADD(A,B,N,Y,L,C)
Cedededededededodevedededededodedododedededededededodedodededededededriovodedededodedodert

c THIS ROUTINE ADDS TWO MATRICES
c ® C(N,M) = A(N,M) + B(N,M)
Chsdededeisdedededesededededededeielerdededededededededeodedededededdedededededededodededee
C DIMENSIONS AND DECLARATIONS
REAL*4% A(N,M),B(N,M),C(N,M,L) ‘
. DO 100 I = 1,N '

DO 100 J = 1,M




C(I,J,L)=A(1,J)+B(I,J)
100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)
Cedededededesededesiriodedeseseededeededodesrideirdrdododirdefedrdedriedeirdededricd

c THIS ROUTINE COMPUTES THE INVERSE OF

c A MATRIX

c C(N,N)=INV [A(N,N)]
C***************3‘:*****************************
c DIMENSIONS AND DECLARATIONS

REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I = 1,N
DO 100 J = 1,N

100 D(I,J)=A(I1,J)

DO 115 I=1,N
DC 115 J=N+1,2*N
115 D(I,J)=0.0

DO 120 I=1,N
J=I+N
120 D(I,J)=1.0

DO 240 K=1,N
M=K+1
IF (K.EQ.N) GOTO 180
L=K
DO 140 I=M,N
140 IF (ABS(D(I,K)).GT.ABS(D(L,K))) L=I
IF (L.EQ.K) GOTO 180

DO 160 J=K,2%N

TEMP=D(K,J)
D(X,J)=D(L,J)

160 D(L,J)=TEMP

180 DO 185 J=M,2*N

185 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ.1) GOTO 220
M1=K-1
DO 200 I=1,M1
DO 200 J=M,2*N
200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N

DO 240 J=M,2*N
240 D(I,J)=D(I,J)-D(I,K)*D(K,J)
260 DO 265 I=1,N
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DO 265 J=1,N
K=J+N
265 C(I,3)=D(1,K)

RETURN
END
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APPENDIX B. TRACK.FOR

This is the TRACK.FOR program used to generate the TRKDATA.DAT file to be
read by SHIPSM.FOR. This program was written by LT Tom Bennett.

REAL*4 XT(4,1),XS1(4,1),PHI(4,4),SPDS1,HDGS1,SPDS2,HDGS2
REAL*4 DT,SPDT,HDGT,XS2(4,1),TEMP1(4,1) ,CASE ,XDIFF1,YDIFF1
REAL*4 XDIFF2,YDIFF2,N1,N2,DTOR,RTOD,BRG1,BRG2

INTEGER TIME,TIMEM1

OPEN(UNIT=2,FILE='NOISE1l. DAT',STATUS='0LD')
OPEN(UNIT=3,FILE='NOISE2.DAT';STATUS='OLD')
OPEN(UNIT=4,FILE='TRKDATA. DAT',STATUS="NEW')

WRITE(*,%*)'ENTER A NEGATIVE NUMBER FOR NOISELESS CASE;'
WRITE(*,*)'POSITIVE FOR NOISY CASE'
READ(*,*)CASE

TIMEM1=0
RTCD=57. 29577951
DTOR=0.017453293

WRITE(*,*)' INPUT DESIRED INITIAL X POSITION OF TARGET'
READ(*,*)XT(1,1)

WRITE(®*,%*) ' INPUT DESIRED INITIAL Y POSITION OF TARGET'
READ(¥,%*)XT(3,1)

WRITE(¥,*)' INPUT DESIRED TARGET SPEED IN KNOTS'
READ( " ,*)SPDT

WRITE(*,®)' INPUT DESIRED TARGET COURSE IN DEGREES'
READ(*,*)YHDGT

XT(2,1)=(SPDT/60)*SIN(HDGT*DTOR)
XT(4,1)=(SPDT/60)*COS(HDGT*DTOR)

WRITE(*,*)'FOR SENSOR 1:'

WRITE(*,*) "' INPUT DESIRED INITIAL X POSITION'
READ(*,%)XS1(1,1)

WRITE(®,*)" INPUT DESIRED INITIAL Y POSITION'
READ(*,*)XS1(3,1)

WRITE(*,%*)' INPUT DESIRED SPEED IN KNOTS'
READ(*,*)SPDS1

WRITE(*,%*)' INPUT DESIRED COURSE IN DEGREES'
READ( *,*)HDGS1

X81(2,1)=(SPDS1/60)*SIN(HDGS1*DTOR)
X81(4,1)=(SPDS1/60)*COS(HDGS1*DTOR)

WRITE(*,%*)'FOR SENSOR 2:'

WRITE(®*,*)' INPUT DESIRED INITIAL X POSITION'
READ(*,%)XS2(1,1)

WRITE(®,*)"' INPUT DESIRED INITIAL Y POSITION'
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300

READ(*,*)XS82(3,1)

WRITE(*,*)' INPUT DESIRED SPEED IN KNOTS'
READ(*,*)SPDS2

WRITE(*,*;' INPUT DESIRED COURSE IN DEGREES'
READ(*,*)HDGS2

XS2(2,1)=(SPDS2/60)*SIN(HDGS2*DTOR)
XS2(4,1)=(SPDS2/60)*COS(HDGS2*DTOR)

po 310 J=1, 1000
WRITE(*, “) INPUT TIME OF UPDATE (NEG. FOR END OF PROBLEM)
WRITE(*,*)"ENTER "9999" FOR SPEED AND COURSE UPDATE'
READ(* ,*)TIME
IF (TIME.LT.O) GOTO 900
IF (TIME.EQ.9999) THEN
WRITE (°,*)'INPUT NEW DESIRED TARGET SPEED IN KNOTS'
READ (*,*)SPDT
WRITE (°,%*)'INPUT NEW DESIRED TARGET COURSE IN DEGREES'
READ (*,*)HDGT

XT(2,1)=(SPDT/60)*SIN(HDGT*DTOR)
XT(4,1)=(SPDT/60)*COS(HDGT*DTOR )

GOTO 300
ENDIF

C UPDATE TARGET AND SENSOR STATES TO MEASUREMENT TIME

DT=TIME-TIMEMI1

C COMPUTE PHI MATRIX

PHI(1,1)=1.0
PHI(1,2)=DT
PHI(1,3)=0.
PHI(1,4)=0.
PHI(2,1)=0.
PHI(2,2)=1,
PHI{2,3)=0.
PHIL‘,q)- )
PHI(3,1)=0.
PHI(3,2)=0.
PHI(3,3)
PHI(3,4
PHI(4,1
PHI(4,2

|
OO0 OOOOO

T

HOOOUF—‘
OO OOo

PHI(4, 4

C UPDATE TARGET STATES

700

CALL MATMUL(PHI,XT,4,4,1,TEMP1)
DO 700 I=1,4

XT(I,1)=TEMP1(I,1)
CONTINUE

C UPDATE SENSOR STATES




CALL MATMUL(PHI,XS1,4,4,1,TEMP1)

DO 710 I=1,4
XS1(I,1)=TEMP1{I,1)
710 CONTINCE
CALL MATMUL(PHI,XS2,4,4,1,TEMP1)
DO 720 I=1,4
Xs2(I1,1)=TEMP1(I,1)
720 CONTINUE

XDIFF1=XT(1,1)-XS1(1,1)
YDIFF1=XT(3,1)~XS1(3,1)

XDIFF2=XT(1,1)-XS82(1,1)
YDIFF2=XT(3,1)-XS2(3,1)

READ(2,*)N1
READ(3,*)N2

IF (CASE.GE.0.0) GOTO 450
N1=0.0
N2=0.0

450 BRG1=RTOD*ATAN2(XDIF¥F1,YDIFF1)+N1
IF (BRG1.LT.0.0) BRG1=BRG1+360
BRG2=RTOD*ATAN2(XDIFF2,YDIFF2)+N2
IF¥ (BRG2.LT.0.0) BRG2=BRG2+360

WRITE(4,500)TIME,XT(1,1),XT(3,1),XS1(1,1),XS1(3,1),
* BRG1,XS2(1,1),XS82(3,1),BRG2
500 FORMAT(14,8F9.4)

TIMEM1=TIME

310 CONTINCUE
900 STOP
END

SUBROUTINE MATMUL(A,B,L,M,N,C)
sedrdryede e e e e S e ve e e e Y e e ek vl v vk e dese vk s ab ke e s dede v e s ske e dleatedde
THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
® C(L,N) = A(L,M) * B(M,N)
ededere e Yot e e devevedede v v dedese sk sk ek vk e v v ddedlede de sk v ve v s Yok de e dede
DIME.'SIONS AND DECLARATIONS
REAL*4 A(L,M),B(M,N),C(L,N)

aaooaon

10 CONTINUE
DO 100 I= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
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C(1,J) = C(I1,J) + A(I,K)*B(K,J)
100 CONTINUVE

RETURN

END







